Refining Economics of the 2007 Amendments to the Phase 3 CaRFG Regulations

California Air Resources Board Public Hearing June 14, 2007

MathPro Inc.

David S. Hirshfeld and Jeffrey A Kolb

Timath /70

June 14, 2007

Assignment

- > Estimate effects in the California refining sector of the proposed 2007 Amendments to the Phase 3 CaRFG3 regulations
- > Assess amendments' effects on
 - ► CaRFG3 production capability with current refining process capacity
 - ► CaRFG3 refining cost, after investment in new process capacity
- > Consider the full range of allowable ethanol concentrations
- > Identify key sensitivities and uncertainties

June 14, 2007

Math /70

2

Overview of the presentation

- Background
- 2. Scope of the analysis
- 3. Technical approach
- 4. Primary results and findings

June 14, 2007

Math Pro

1. Producing CaRFG3 Under the Amended PM3

- Amended PM3...
 - Introduces increase in VOC emissions due to ethanol permeation; and
 - Requires improvements in CARBOB quality to offset permeation effect
- To produce complying gasoline and meet forecast demand, California refiners must
 - Invest in new process capacity,
 - Modify refining operations, and/or
 - Use more ethanol

June 14, 2007

Math Pro

4

2. Scope of the analysis

- > Objective: estimate the magnitude of the changes in refining operations and economics induced by amendments
- > Analyze prospective CARB gasoline production
 - ▶ With no new refining investment, and
 - ► With new refining investment

at four levels of ethanol blending: 0, 5.7, 7.7, and 10 vol%

June 14, 2007

Math Pro

Interpreting the cases analyzed

- Cases without refining investment
 - ► Can be viewed as denoting "short-term" refining operations
 - ► Primarily, are analytical artifacts used to delineate requirements for refining investments
- > Cases with refining investment
 - ▶ Denote "long-term" refining operations
 - ► "Long-term" means time required to bring new process capacity online (≈ 4 years)

June 14, 2007

Math /70

6

3. Technical approach

- > Used a refinery LP model to analyze
 - ▶ Short-term and long-term baseline cases
 - ► Eight study cases (2 periods, 4 levels of ethanol blending)
 - ► Two additional cases
- ➤ Model incorporates amended PM3
- Model represents aggregate operations of all California refineries producing gasoline
- ➤ Model calibrated to closely match reported aggregate operations of California refineries in Summer 2006

June 14, 2007

Math Pro

Key premises and assumptions

- > Steady-state operations (no upsets, 2006 capacity utilization rate)
- > Excessed refinery streams can be sold, but at distress prices
- No degradation in emissions performance of gasolines produced for sale out of state (e.g., AZ CBG, Las Vegas gasoline)
- Price of ethanol = marginal cost of CARBOB

June 14, 2007

Math Pro

8

Model's data content derived from. . .

- > Public data on California refineries
- > Technical information, in aggregated from, obtained by CEC in confidential survey of refiners
- ➤ Information and insights obtained by MathPro Inc. in confidential discussions with some individual refiners

June 14, 2007

Math Pro

Aggregate refinery modeling

- Standard analytical approach in studies such as this, due to limits on time, resources, and availability of refinery-specific data
- Represents refining operations as though every refinery were "average," in terms of capacity, gasoline properties, etc.
- ➤ Tendency to "over-optimize" to return results somewhat better than what can be achieved in practice
- Best used to estimate differences between cases baseline and regulatory cases, cases denoting different levels of ethanol use, etc.

June 14, 2007

Math />

10

4. Primary results and findings Without refinery investment

Model indicates changes in CaRFG3 production capability

> 0% EtOH: Operations infeasible

 \gt 5.7% EtOH: \gt 10% loss, with excessing of C₅s and FCC naphtha

> 7.7% EtOH: 2-3% loss, with excessing of C₅s

➤ 10% EtOH: CaRFG3 volume maintained, with excessing of C₅s

June 14, 2007

Math Pro

These results likely over-state refining sector's short-term capability

- > Emissions reductions returned by PM3 are highly sensitive to changes in gasoline properties
- > Over-optimization with aggregate refining model masks differences in capabilities of individual refineries
- Significant differences among California refineries in certain processing capabilities – especially with respect to sulfur control
- > Sulfur is a key property affecting NOx emissions

June 14, 2007

Math Pro

4. Primary results and findings With refinery investment

Weight Percent Oxygen			
0.0%	2.0%	2.7%	3.5%
1.5	0.2	-0.2	-0.2
6.2	2.4	0	-0.3
0.8%	-0.2%	-0.7%	-1.5%
	0.0% 1.5 6.2	0.0% 2.0% 1.5 0.2 6.2 2.4	0.0% 2.0% 2.7% 1.5 0.2 -0.2 6.2 2.4 0

June 14, 2007

T Math I'ro

14

Interpreting the long-term results

- Reflect refiners' investing to comply with the amended PM3 regulations and to meet projected demand growth to 2012
- ➤ Represent difference in refinery economics between operating under existing PM3, with 5.7% ethanol blending (*Reference* case), and operating under amended PM3 at various ethanol blending levels

June 14, 2007

Math Pro

Interpreting the long-term results

- ➤ Likely to somewhat understate refining investments and costs due to over-optimization with aggregate refining model
- In particular, do not account for likely investments in sulfur control by refineries with above-average sulfur content

June 14, 2007

Math Pro

16

Additional cases yield estimates of magnitude and effects of likely investments in sulfur control

- Aggregate refining model cannot directly estimate investment requirements of individual refineries
- But additional model runs returned estimates of total investments likely for sulfur control in refineries with sulfur content above average
- Additional runs stipulate that all medium and heavy FCC naphtha be hydrotreated

June 14, 2007

Math Pro

Effects of investment in sulfur control ("long-term" cases): all Med and Hvy FCC naphtha hydrotreated

	Weight Percent Oxygen		
Category	2.7%	3.5%	
Refinery Investment (\$B)	0.5	0.6	
Refining Cost (¢/g)	1.5	0.9	
Change in Fuel Economy (%)	-0.7%	-1.4%	

June 14, 2007

Math Pro

18

Our analysis leads to these conclusions

- ➤ Refineries likely will blend ethanol in the range of 2.7 3.5 wt% oxygen
- Some refineries will invest in additional sulfur control directed at FCC naphtha

June 14, 2007

Math Pro